Chapter 7

Project Monitoring

Project monitoring is basically keeping track of progress of a project by comparing its performance against targets, looking for causes of deviation, and attempting to check adverse variances. Time and cost are two critical parameters for monitoring and control of a project, and criteria for decision making in project management. Resources management is another very important area in this respect.

A project may succeed or fail, based on a number of factors like choice of project, choice of site, and its timely execution without any cost over-run. Examples of failed projects are innumerable, evidenced by enormous project delays, cost overruns and persistent accumulation of losses due to, inter-alia, inefficient and/or ineffective monitoring and control. The project manager monitors the overall project. The phase project manager reports to the overall project manager of any risks.

Monitoring has the following tasks and the concerned officer/manager does it with utmost care:

- Identify Risks, Potential Project Problems, As Early As Possible
- Identify When Goals May Not Be Met
- Identify When Constraints May Be Violated
- Ensure That Contingency Plans Occur Before Unrecoverable Problems Occur
- Provide and receive project status for the phases and total project.

When there is a significant chance that the goals of the project will not be met, this risk should be reported to upper management. The project manager after identifying the likely problems, risks and constraints would discuss the same with team and the higher management for resolving the issues without hurdles. What however is not often realized is that project control involves all the stages of a project cycle. It is not the implementation alone which calls for close supervision and control. (The expressions ‘supervision’ and ‘control’ should not mislead people into believing that these will be day to day intervention and interference). It has to be systematic, well conceived and built into different stages of project cycle. This supervision and control mechanism has to be set up well in advance, at the time of inception.

WHAT IS PROJECT MONITORING?

As soon as the project is launched, monitoring and control becomes the prime concern of project management. In fact, planning and control becomes clearly intertwined in an integrated management process. Project monitoring and control involves a regular comparison of performance against targets, a search for the causes of deviation, and an attempt to check adverse variances. This serves two major purposes:
(i) It keeps everyone concerned with the project, informed regarding the status of the project. We can tell whether we are on time or delayed, reasons for delay, if any, potential delays, if any, and reasons thereof; whether we are within the budget or have exceeded it, reasons for exceeding the budget, if any, and so on.

(ii) It motivates the project personnel to strive for achieving project objectives.

Effective monitoring and control is critical for realization of project objectives. Yet more often than not, control of project in practice tends to be ineffective. This is mainly due to the following reasons:

a. **Characteristics of the project** - Large and complex projects, involving thousands of activities, many organization and personnel, make the task of monitoring and controlling them difficult. Keeping track of physical performance and expenditure on so many activities going on simultaneously, which are mostly non-routine, is a stupendous task. Future, coordination and communication problem multiplies with the complexity of organization involved in the project.

b. **People problem** - Most managers, used to the steady rhythm of normal operations and routine work, find themselves thoroughly inadequate to monitor a wide range of disparate factors, to sense the symptoms indicative of potential problems, and to comprehend the combined effect of multiple forces interacting in a large project. This may be due to lack of experience, training, competence and commitment to control projects.

c. **Poor control and information system** - Some of the weaknesses in control and information system could be-

- Delay in reporting performance, which prevents effective monitoring and initiation of timely action to check adverse developments.
- Inappropriate level of detail, i.e. information, irrespective of the level of detail employed, for project planning and budgeting, is not useful for identifying problems and planning corrective action.
- Unreliable information, i.e. inaccurate date & information. There is a tendency to report, “Everything is OK”, when, in fact, they are not OK.

The purpose for any cost and control system is to establish policies, procedures and techniques that can be used in management and control of projects. The planning and control system must, therefore, provide information that gives a picture of true work progress and relates cost and schedule performance. It should also identify potential problems with respect to their sources and be able to demonstrate that the milestones are valid, timely and auditable. The planning and control system, in addition to being a tool by which objectives can be defined also exists as a tool to develop planning, measure progress and control change.
CRITERIA FOR DECISION MAKING

Some of the important criteria for decision-making are as under:

- Time overrun/under-run i.e., whether the ‘activities’ are on course, delayed or advanced, particularly the critical ones; whether criticality of ‘activities’ has changed or likely to change.
- Cost overrun/under-run. i.e., whether actual cost is more than/less than the value of work done.
- Resources availability; matching availability of manpower, construction equipment, funds, etc. with the schedule.

CAUSES OF PROJECT SUCCESS OR FAILURE

It is seen that many mega projects of water supply, STP, roads etc., get delayed due to improper project manager/team and unclear project authority and powers not defined.

Experience and research studies in India indicate that rarely the critical elements of a project, viz.:-

- Correct choice of project,
- Proper choice of site,
- Timely execution of the project,
- Keeping check on the capital cost,
- Proper Project Manager

are found to combine, resulting in exorbitant delays, capital costs and operating costs far exceeding estimates, and making the project a nonstarter. A study of a few years ago gives alarming information on project overruns in India, which becomes a serious economic problem for the country. 60% of 132 mega and major projects, individually costing more than Rs. 100 core each, and 70% of 199 medium projects, costing more than Rs. 20 cores each, in public sector have incurred time overruns ranging up to 13 years. Cost overrun have taken away about 20% of total financial outlay. Of the 331 infrastructural development projects, 217 have incurred cost overruns of 80% of the original cost. Surface transport stands out with time overrun of 157 months. Such massive overrun not only erode financial outlays, but also thwart progress in industrial and infra-structural development (DoPT GoI PM Material)

Some constraints and causes have been mentioned under ‘PROJECT PLANNING’. The crux of good project management is correct identification of causes of delay to help the project team to try and eliminate the same. Broadly, the reasons for delay may lie in-

- Planning
- Organizing
- Monitoring

Hence the need to plan the resources adequately, right choice of project manager and his team, project oriented organization (based on Work Breakdown Structure), proper and adequate delegation of authority commensurate with responsibility would go a long way to reduce the overruns. Proper MIS and effective coordination with all concerned (with the organization and
outside agencies, statutory bodies etc.) would ensure timely project completion. Some of the important factors to be borne in mind and taken care are:

- Detailed planning and implementation schedule.
- Sound monitoring.
- Resource planning based on time schedule and anticipated progress.
- Ensuring safety measures while preparing contracts.
- Rewards/incentive schemes for project staff.
- Selection of appropriate, feasible technology.
- Decentralized decision making for fast implementation.
- Continuity of project manager and key project personnel till completion of the project.
- Adequate training of workers and supervisors involves.
- Anticipating omissions and mistakes, and preparing contingency plan.
- Communication follow up with vendors, subcontractors, financing agencies, statutory authorities.
- Adequate MIS.
- Encourage innovative attitude and skill of the project team.
- Clarity of scopes on project objectives.
- Clarity of responsibilities and authority to the team members.
- Lucid financial cost estimates.
- Milestone charts, project audit reports, etc.

**Performance Monitoring**

Once the project is completed, performance review should be done periodically to compare actual performance with projected performance. Feedback on project is useful in several ways:

- It helps us to know how realistic were the assumptions underlying the project.
- It provides a documented log of experience that is highly valuable in decision making in future projects.
- It suggests corrective action to be taken in the light of actual performance.
- It helps in uncovering judgmental biases.
- It includes a desired caution among project sponsors.

Performance Indicators (PIs) are an effective way of communicating a project’s benefits, usually as part of a performance measuring and reporting process. Incomes and other benefits including social costs and benefits are to be assessed as explained in chapter on appraisal of projects.

**Planning Budget**

Budget requirement varies depending upon the duration and size of the project. For projects involving long duration with multiple tasks and procurements, resources have to be allocated judiciously as and when required. Top management should ensure that this is done to ensure successful completion of project.
Procurement Procedures

Having identified the material and equipment required for the project, the next step is to identify the various vendors, provide specifications, invite quotations, and carryout discussions with select vendors. For medium to high value items, tendering process can be adopted. Tenders have to be evaluated for technical and financial aspects. (See chapter on tendering and contract procedure)

PARAMETERS & TOOLS OF CONTROL

Use of Network Analysis for project monitoring

Network forms the basis for monitoring. The critical activities, with zero float/very little float are closely watched. As activities get completed progressively, the network is updated to take note of fresh interdependencies that might come to light while updating the network. The network technique is a versatile one, as it is action-oriented and continually revalidates and revises the inter-relationship between the activities.

Let us assume the following example, which gives the position of the project at the planning and scheduling stage before actual start of the activities.

<table>
<thead>
<tr>
<th>Activity</th>
<th>Duration (Weeks)</th>
<th>Early starts (ES)</th>
<th>Early Finish (EF)</th>
<th>Late Start (LS)</th>
<th>Late Finish (LF)</th>
<th>TF</th>
<th>FF</th>
<th>IF</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>*B</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>7</td>
<td>0</td>
<td>7</td>
<td>2</td>
<td>9</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>D</td>
<td>3</td>
<td>7</td>
<td>10</td>
<td>9</td>
<td>12</td>
<td>2</td>
<td>0</td>
<td>-2</td>
</tr>
<tr>
<td>*E</td>
<td>7</td>
<td>5</td>
<td>12</td>
<td>5</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>*F</td>
<td>3</td>
<td>12</td>
<td>15</td>
<td>12</td>
<td>15</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>G</td>
<td>2</td>
<td>10</td>
<td>12</td>
<td>13</td>
<td>15</td>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>*H</td>
<td>2</td>
<td>15</td>
<td>17</td>
<td>15</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Critical activities have been marked with asterisk (*) in the above table.
We note from Fig 1 that activities B, E, F & H are ‘critical’, (1-3-4-6-7-8) forming the critical path with duration of 17 weeks. Therefore, the above activities would call for maximum attention while implementing the project.

Now, let us imagine that there has been a slippage, in the first 4 weeks, in activity C of 2 weeks eating away the float in the path (1-2-5-6). We redrew the network depicting the changed situation, as shown in Fig 2 below:
The position depicted in Fig 2 is tabulated below in Table 2, indicating critical activities with asterisk(*).

<table>
<thead>
<tr>
<th>Activity</th>
<th>Duration (weeks)</th>
<th>Early Start</th>
<th>Early Finish</th>
<th>Late Start</th>
<th>Late Finish</th>
<th>Total Float</th>
<th>Free Float</th>
<th>Independent Float</th>
</tr>
</thead>
<tbody>
<tr>
<td>*B</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>*C</td>
<td>9</td>
<td>0</td>
<td>9</td>
<td>0</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>*D</td>
<td>3</td>
<td>9</td>
<td>12</td>
<td>9</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>*E</td>
<td>7</td>
<td>5</td>
<td>12</td>
<td>5</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>*F</td>
<td>3</td>
<td>12</td>
<td>15</td>
<td>12</td>
<td>15</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>G</td>
<td>2</td>
<td>12</td>
<td>14</td>
<td>13</td>
<td>15</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>*H</td>
<td>2</td>
<td>15</td>
<td>17</td>
<td>15</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

We see that all but one activity (G) has become critical. Hence, two additional activities, viz. C and D would need equal attention as activities B, E, F & H.

On the other hand if activity duration decreases from that estimated and planned, this may again bring about a change in the critical activities/ paths, with associated change, which is brought in focus by Network Analysis.

In this connection, it may be recalled that in the example on crashing if network for optimizing it, we have seen how the criticality of the activities change.

Quit often, in a real life project, we are forced to re-examine the interrelationship and interdependencies between various activities and try to redraw the network with altered interdependencies in an attempt to match the resources availability the slippage that might have occurred, or otherwise, to improve upon the original schedule. For example, roof work may be started even though walls have not been fully completed, or equipment erection may start without fully completing the shed/ room for the same. Network Analysis can be very handy for such exercises.

The hypothetical example given here is for a simple project consisting of only a few activities. If instead, we have a large and complex project, such deviations would lead to a far greater implication affecting dozens, may be hundreds of activities.

**Analysis and Control of Cost and Time**

As the project progresses, the following parameters may be measured/ estimated periodically for the purpose of monitoring and control.

(I) **Cost incurred to date**- In a network cost system, costs are recorded activity-wise. Cost incurred to date is the sum of costs for various activities. We can develop a graph to compare the actual cost with planned cost vis-à-vis time
(II) **Value of work done to date**- When costs are measured, an estimate should also be made of the extent of work completed. The value of work can then be obtained as below:
Value of work = Budgeted cost X percentage of work completed

(III) **Cost over-run/under-run to date**- There is cost over-run when the cost incurred is more than value of work done. Cost under-run is indicated when value of work done is more than the cost incurred. Generally, cost over-run/under-run is expressed as percentage of value of work completed, i.e.

\[
\text{(Actual cost - value of work completed) x 100} \quad \text{(Value of work, completed)}
\]

(IV) **Time over-run/under-run to date**- This is comparison of actual progress of work with schedule. Over-run is when project is behind schedule and under-run is when project is ahead of schedule.

(V) Generally, for the purpose of showing progress, network of activities is represented in Bar chart form and progress of each activity is shown against respective bar, as shown below.

**FIG 3: PROGRESS BAR CHART SHOWING ACTIVITY-WISE PROGRESS AT THE END OF 4TH WEEK, CORRESPONDING TO FIG 2**

```
<table>
<thead>
<tr>
<th>Activity</th>
<th>0</th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>10</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100%</td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>80%</td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30%</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0%</td>
</tr>
<tr>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0%</td>
</tr>
</tbody>
</table>
```

**NOTE:** Progress shown by solid lines inside respective bars. Percentage progress indicated in figures alongside each bar.
It may be noted that, while activities A & B are on course, activity C is behind schedule by 2 weeks (approx 30% progress against schedule of 57%), which results in the revised network Fig. 2.

Based on progress of individual activities, we can assess whether the project is running as per schedule, behind schedule or ahead of schedule. In the example cited above, the project is just on course.

The cost and time over-run/under-run can be displayed graphically against time parameter, as shown below for a hypothetical project.
Reporting

Cost and slippage aspects are most vital for project management and need to be kept under constant watch. Relevant periodic reports, clearly bringing out these aspects, have, therefore, to be furnished timely to the senior management on a regular basis. The reports should include the following:

(I) **Cost over-run**—run and under-run to date, as explained above.

(II) **Projection of total cost over-run and under-run**, which can be determined by comparing the planned or budgeted cost estimate with actual cost to date and adding the estimated costs to complete the project. The estimated cost to completion may again vary from the original plan/budget for the remaining work due to factors, which were not visualized while preparing the plan. So, the plan (budget) had to be carefully reviewed periodically and reports prepared accordingly.

(III) **Time over-run and under-run**, as explained above

(IV) **Projection of total time over-run/under-run**, which is the present expected date of project completion. This not only takes into account the slippage, which has already taken place, but also future deviations likely to occur, based on current assessment. Here also, network analysis is of great help for periodic review and recasting to assess the impact of the deviations on project completion time.

(V) **Final cost report**, which gives a summary of the final project costs. A properly prepared final cost report is a valuable document to guide future estimates. More often than not, this report tends to get neglected because once the project gets completed, the team members, relieved of all tensions, prefer to relax.

Apart from the above, various formats to record and report progress for middle and junior management levels are used. These report deals with activity-wise progress and give a micro-view of the progress for planning and implementing detailed corrective actions.

**CORRECTIVE ACTIONS**

Corrective actions, as below, would emanate from the foregoing analysis.

(i) **Time over-run**—In case of time over-run, we have to review the schedule of activities, re-examine their inter-dependencies, explore the possibilities of crashing the activities in critical path, by increasing/re-allocating available resources, draw revised schedule in an attempt to minimize the slippage. This has to be a continual process, as indicated in Fig.1 under Project implementation.
(ii) **Cost Over-run.-** We review the planned/budgeted cost estimates to complete the project and possibilities of cost reduction of resources to non-critical activities to the extent possible, reduction in resources considered redundant and other feasible means.

(iii) **Resources constraints-** In real life situations, we are sometimes confronted with the problem of matching the schedule with limited resources, e.g. manpower, funds, etc. In such a case we reallocated resources to activities, in order of priority, most critical activity getting the top priority in the matter. The attempt would be to redistribute the resources without incurring time over-run. If impossible, we would try keep it to the minimum.

(iv) In the operating cycle effective management requires the designing of a well-organized cost and control system and its subsequent implementation to obtain periodic feedback. This will require the following:

- Thorough planning of the work
- Good estimating of time labour and costs
- Disciplined budget and proper expenditure authorization procedure
- Timely reporting of physical progress and cost expenditure
- Regular variance analysis.

(v) An effective control system monitors schedule and performance as well as costs by setting budgets, measuring expenditures against budgets and identifying variances, assuring that the expenditures are proper, and taking corrective action when required. This concept is on the term Work Breakdown structure (WBS), which provides the framework on which costs, time and schedule/performance can be compared against the budget for each level of the WBS. This is the source from which all control and costs must emanate.
QUIZ
Chapter-7

1. **Project monitoring means**
   a. Tracking progress & delays
   b. Checking adverse variances
   c. Controlling time & resources against target
   d. All of the above

2. **Project monitoring has the following task**
   a. Identify risks
   b. Preventing unrecoverable problems
   c. None of the above
   d. A&B

3. **You want to perform active risk acceptance. What should do?**
   a. Create contingency reserves in resources, money and time.
   b. Develop a plan to minimize impact in case that an identified risk occurs.
   c. Develop a plan to minimize the probability of occurrence for identified risks.
   d. Make additional resources available to speed up the project.

4. **Realization of project objectives is possible only due to effective monitoring**
   a. True
   b. False

5. **Monitoring is:**
   a. Assessing progress on tasks.
   b. the identification of tasks and their duration
   c. Allocating staff to tasks.
   d. placing of tasks in order
   e. none of the above

6. **Your project is executed with a globally spread virtual team. The project progress has been found to be too slow. Which measure is most likely to immediately speed up the project?**
   a. Technical training for all team members
   b. Daily phone conferences and detailed reporting
   c. A team meeting at a location convenient to all team members
   d. Collocation of team members at a suitable place

7. **Resourcing is:**
   a. Allocating staff to tasks.
   b. The identification of tasks and their duration
   c. Placing of tasks in order.
   d. Assessing progress on tasks
   e. None of the above
8. Which of the following is achieving management commitment?
   a. New approach to business self-image
   b. Active involvement by senior staff
   c. Prototyping.
   d. Education and training
   e. None of the above

9. Which of the following is not a main element of the project management process?
   a. Plan.
   b. Estimation
   c. Systems design
   d. Schedule
   e. Monitor

10. The project manager has to monitor the overall project
    a. True
    b. False

11. You are assigned as the project manager to a project which is executed for a customer under contract. Your customer informed you this morning that they insist on certain "refinements" of the project scope. You agree that the requested actions make really sense to the project, but believe that they constitute a major change increasing the project scope. What should you do next?
    a. Accept the request of the customer. Diligently document the additional costs and working hours spent by yourself and the team on the implementation of the change and invoice these to the customer at appropriate rates.
    b. Perform Earned Value Analysis to assess the current status of the project and get all the numbers you need to communicate the case to the Change Control Board which then will have to make the best decision regarding the customer request.
    c. Check the contract, the project charter, the scope statement and other documents related to the project and the contract. Implement ADR (Alternative Dispute Resolution) procedures if the conflict cannot be resolved otherwise.
    d. Talk to the project sales department and find a joint solution with them how to best reject the request considering the commercial and strategic value of the customer to the organization you are working for.

12. There is a tendency to report, “Everything is OK”, when, in fact, they are not OK.
    a. True
    b. False

13. Network forms the basis for monitoring
    a. True
    b. False
14. While monitoring the project using network, activities falling on critical path & those having very little float are closely watched
   a. True
   b. False

15. As the project progress, the following parameter may be measured/ estimated periodically for the purpose of monitoring & control
   a. Cost incurred to date
   b. Value of work done todate
   c. Cost over-run/ under-run to date
   d. All of the above

16. A project management team is evaluating the causes that might contribute to unsatisfactory performance and quality. Which of the following statements is not true?
   a. Normal process variation is attributable to random causes and sometimes also called "white noise".
   b. Special causes are easier to predict and handle than random causes (also called common causes).
   c. Special causes are unusual events which are difficult to foresee and often produce outliers.
   d. A process can be optimized to limit the bandwidth of variations due to random causes.

17. You are performing a project management audit in your company and find that most of the project plans are neither consistent nor up-to-date. Which of the following statements is not true?
   a. Projects should never be executed without a valid, updated and working project management plan.
   b. The consistency of the project management plan is secondary because it is only the results that matter.
   c. A great deal of effort is required to develop and update a project plan, but the benefits include less pressure on all stakeholders and a resulting product that will satisfy the requirements.
   d. Poor planning and insufficient updating of project management plans are common reasons for cost and time overruns.
18. You are project manager in a global project with a team consisting of people from various countries. What can you try to prevent misunderstandings due to cross-cultural differences?
   a. Use all communication methods available that are suitable for the team and follow up in writing when communicating verbally. Remember that cultural and individual diversity may help project teams solving unforeseen problems during the course of the project.
   b. When you are about to form a team for your project, keep in mind that some cultures are developed, others are more primitive. Some have values, some not. You should consequently avoid choosing members from countries with cultures that are not similar to your own.
   c. Cultural dilemmas can prevent any project from being successful. They should therefore be smoothed or suppressed so as to make sure that they cannot disrupt project work. Your effort should concentrate on communication that can help reach that goal.
   d. As norms regarding communication habits differ significantly across various cultures, communicating between people from different countries should only be done using language. The nonverbal dimension simply bears too many risks.

19. Which statement on conflicts is true?
   a. Conflict resolution should focus on people, not issues.
   b. Conflict is natural and forces a search for alternatives.
   c. Conflict should always be handled in private and not in the team.
   d. Too much openness is a common cause of conflict.
**TEMPLATES (Indicative)**

**Project Monitoring**

*Actual Vs Planned Progress of Project*

<table>
<thead>
<tr>
<th>Activity</th>
<th>Planned Time</th>
<th>Actual Time</th>
<th>Difference</th>
<th>Planned Cost</th>
<th>Actual Cost</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>


# Actual Vs Planned Progress of Project

<table>
<thead>
<tr>
<th>Project Title</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Manager/Officer</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Task</th>
<th>Description of change</th>
<th>Date received</th>
<th>Date evaluated</th>
<th>Date approved</th>
<th>Date completed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

## PROJECT DETAILS

### Project Name:

### Project Manager/Officer:

## RISK DETAILS

### Risk

Reported By: Name of person who is reporting the risk

Date: Date on which this form is completed
<table>
<thead>
<tr>
<th><strong>Risk Description:</strong></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Add a brief description of the risk identified and its likely impact on the project (e.g. scope, resources, deliverables, timescales and/or budgets)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><strong>Risk Rate:</strong></th>
<th><strong>Risk Impact:</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td>(i.e. Low, Medium or High)</td>
<td>Describe and rate the impact on the project if the risk happens (i.e. Low, Medium or High)</td>
</tr>
</tbody>
</table>

**RISK MITIGATION**

**Recommended Preventative Actions:**
Add a brief description of any actions that should be taken to prevent the risk from happening

**Recommended Contingent Actions:**
Add a brief description of any actions that should be taken, in the event that the risk happens, to minimize its impact on the project

**APPROVAL DETAILS**

**Supporting Documentation:**
Reference any supporting documentation used to substantiate this risk

**Signature of Project Manager/Officer**
<table>
<thead>
<tr>
<th>Task</th>
<th>Date Reported</th>
<th>Reported By</th>
<th>Received By</th>
<th>Description of Risk</th>
<th>Description of Impact</th>
<th>Likelihood Rating</th>
<th>Impact Rating</th>
<th>Priority Rating</th>
<th>Preventative Actions</th>
<th>Action Resource</th>
<th>Action Date</th>
<th>Contingency Actions</th>
<th>Resource</th>
<th>Action Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
# Project Reporting Form

<table>
<thead>
<tr>
<th>Project Title:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Sponsor:</td>
<td>Project Manager:</td>
</tr>
</tbody>
</table>

|-----------------|------------|

**RAG Status***: **RED / AMBER / GREEN**

### Headlines

- [ ]

### Tasks, Milestones, Outcomes delivered this period

<table>
<thead>
<tr>
<th>Tasks, Milestones, Outcomes</th>
<th>Comments</th>
<th>Planned</th>
<th>Actual</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Major Risks and Issues**  
Include an assessment of the impact and any actions taken

### Recommendations and Requests for Decisions or Support
<table>
<thead>
<tr>
<th>Tasks, Milestones, Outcomes</th>
<th>Comments</th>
<th>Plan</th>
<th>Forecast</th>
</tr>
</thead>
<tbody>
<tr>
<td>* RED</td>
<td>&quot;Major concern - escalate to the next level” Slippage greater than 10% of remaining time or budget, or quality severely compromised. Corrective Action not in place, or not effective. Unlikely to deliver on time to budget or quality requirements</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMBER</td>
<td>&quot;Minor concern – being actively managed” Slippage less than 10% of remaining time or budget, or quality impact is minor. Remedial plan in place.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GREEN</td>
<td>&quot;Normal level of attention” No slippage. No additional attention needed</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
## Progress Report

### Project Name:

<table>
<thead>
<tr>
<th>Reporting Period:</th>
<th>Project Manager/authority/officer:</th>
<th>Project owner:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prepared by:</td>
<td>Date Prepared:</td>
<td>RAG Status</td>
</tr>
</tbody>
</table>

### Project Description:

<table>
<thead>
<tr>
<th>Project End Date:</th>
<th>dd/mm/yyyy</th>
</tr>
</thead>
</table>

### Key tasks Completed during this period

### Key tasks Outstanding this period

<table>
<thead>
<tr>
<th>Delivery Date:</th>
</tr>
</thead>
</table>

### Key tasks for next reporting period

### Risk Management

<table>
<thead>
<tr>
<th>Log No</th>
<th>Risk</th>
<th>Action/Status</th>
</tr>
</thead>
</table>

### Issue Management

<table>
<thead>
<tr>
<th>Log No</th>
<th>Issue</th>
<th>Action/Status</th>
<th>Req No</th>
<th>Details</th>
<th>Approved</th>
</tr>
</thead>
</table>

### Change Management

### Financial Statement

<table>
<thead>
<tr>
<th>Capital</th>
<th>Revenue</th>
<th>External</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source</td>
<td>Budget</td>
<td>Actual</td>
</tr>
<tr>
<td>Source</td>
<td>Budget</td>
<td>Actual</td>
</tr>
<tr>
<td>Source</td>
<td>Budget</td>
<td>Actual</td>
</tr>
</tbody>
</table>
Controlling of Project

<table>
<thead>
<tr>
<th>Project Title</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Manager/officer</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHANGE REQUEST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Originator</td>
</tr>
<tr>
<td>Phone:</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Items to be changed</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Reasons for change, benefits, date required</td>
</tr>
<tr>
<td>Estimated cost and time to implement (quotation attached? Yes No)</td>
</tr>
<tr>
<td>Priority / Constraints (impact on other tasks, implications of not proceeding, risks)</td>
</tr>
</tbody>
</table>
### CHANGE EVALUATION

<table>
<thead>
<tr>
<th>What is affected</th>
<th>Work required (resources, costs, dates)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Related change requests</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Name of evaluator</th>
<th>Date evaluated</th>
<th>Signature</th>
</tr>
</thead>
</table>

### CHANGE APPROVAL

<table>
<thead>
<tr>
<th>Accepted</th>
<th>Rejected</th>
<th>Deferred</th>
<th>Name</th>
<th>Signed</th>
<th>Date</th>
</tr>
</thead>
</table>

Comments

### CHANGE IMPLEMENTATION

<table>
<thead>
<tr>
<th>Asset</th>
<th>Implementer</th>
<th>Date completed</th>
<th>Signature</th>
</tr>
</thead>
</table>

Description of change

<table>
<thead>
<tr>
<th>Description of change</th>
<th>Date received</th>
<th>Date evaluated</th>
<th>Date approved</th>
<th>Date completed</th>
</tr>
</thead>
</table>

215